Tokyo Tech Small Satellite Development Projects - Cute-1.7 and TSUBAME -

Katsutoshi Imai, Naoki Miyashita, Masafumi Iai, Kuniyuki Omagari, Masashi Asami, Wataru Miyazawa, Hideyuki Yabe, Kei Miyamoto, Takeshi Usuda, Ken Fujiwara, Shinji Masumoto, and Saburo Matunaga

> Laboratory for Space System (LSS) Department of Mechanical and Aerospace Engineering Tokyo Institute of Technology

Contents

Introduction
 Cubesat CUTE-I

Cute-1.7
 Mission overview
 Enginering model

TSUBAME

Mission overview

Conceptual design model

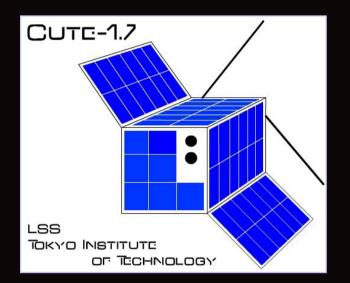
Conclusion

Lab for Space Systems

Cubesat Project - CUTE-I

Laboratory for Space System(LSS) at Tokyo Tech 1st satellte

<u>CUTE-I</u> 10cm × 10cm × 10cm 1kg Acquisition of satellite bus technology


WSANE 2005 Mar 4. 2005

June, 2003 Plesetsk, Russia

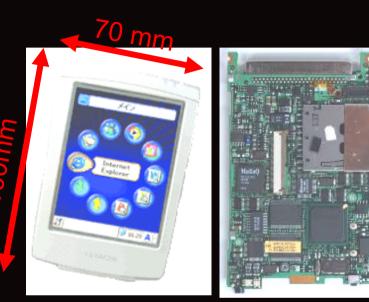
Beyond CubeSat



<u>Cute-1.7</u> 20cm × 10cm × 10cm 2kg Demonstration of new design methodology

TSUBAME 30cm × 30cm × 20cm 16kg Science observation

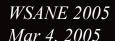
Purposes of Cute-1.7 Project


- To facilitate future picosatellite development by demonstrating a new design methodology.
- \Rightarrow Use of PDA and its peripheral devices.
- To demonstrate newly developped observation equipment
- ⇒ Use of low energy particle sensor named APD
- To share experiment opportunities using real satellite with space engineering community.
- ⇒ Advanced magnetic torquers control algorithm

PDA as an OBC

To facilitate developmentPDA has merits of ····

- COTS
- Programming Environment (Windows CE.NET)
- Variety of I/F
 (USB, Memory card slot, etc)
- Radiation Test (at Osaka Univ.)
 Low probability of SEU or SEL



Hitachi PDA NPD-20JWL

 $\frac{S}{O}$

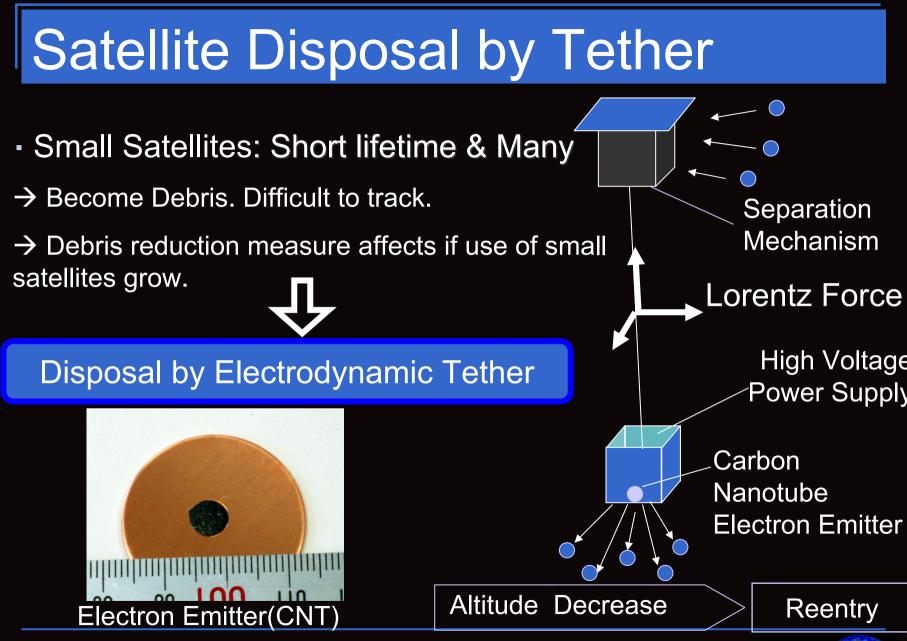
Data acquisition system, Comm controller, Camera, Memory car

USB

U S

slot

Magnetic Torquers


Cute-1.7 satellite is equipped with three magnetic torquers. Offer Cute-1.7 as a test bed to space engineering community

Functionality for Radio amateurs

- We have used and will use amateur radio frequencies
 - To provide communication resources for the general amateur radio community
- To return something to amateur radio community, Packet Repeater is installed.
 Uplink: 1.2GHz
 - Downlink: 430MHz (shared with telemetry line)

WSANE 2005 Mar 4, 2005 ab for Space Systems

APD Demonstration

Avalanche Photodiode (APD) is a new chargedparticle detector

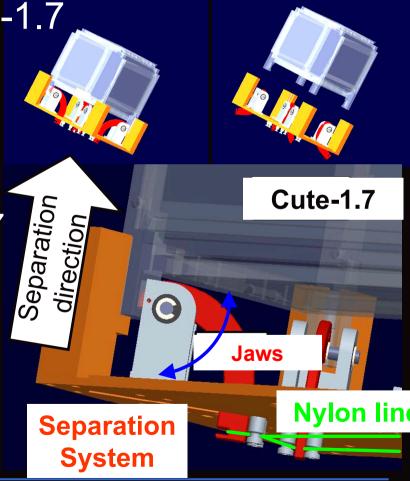
Characteristics

- Very small
- Low-power consumption
- High performance
 - i. High speed response
 - ii. Internal gain

APD by Tokyo Tech astronomy lab.

Considering to equip it with much larger satellite in the future

Separation System

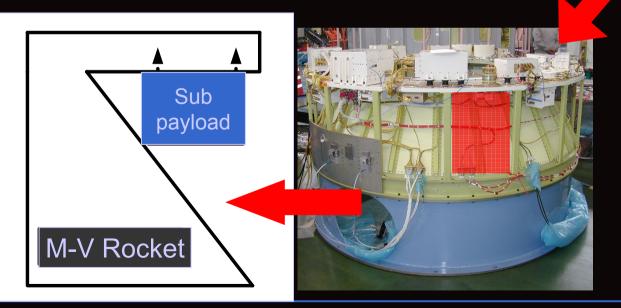

Same mechanism as one used for CUTE-I The size is adjusted to CUTE-1.7

It consists of 4 jaws, a nylon line and a heater

These jaws hold pillars of CUTE-1.7 and are tightened by the nylon line.

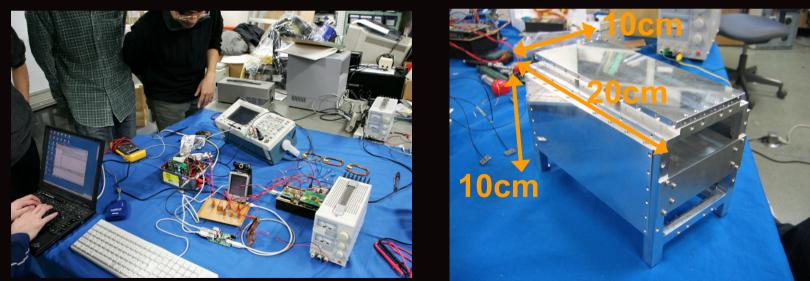
The nylon line is heat to be cut.

The jaws release the CUTE-1.7 pillars.



Launch Rocket

M-V Rocket #8 Sub Payload
 JAXA / ISAS solid rocket
 balance weight space in 3rd stage


orbit: Perigee h=185km apogee h=800km

Current Status of Project

EM integration test with APD has been done.Launch is scheduled in 2005.

EM integration test

Body structure

Mission Background - GRB

Gamma-ray Burst (GRB)

- The biggest explosion phenomenon since the Big Bang
- Early phase of genesis is not understood

Origin of high energy radiation, magnetic field structure (gamma-ray burst, active galaxy, supernova remains)

Drawback of Observation

- Extremely short
- Observation within 10sec is desired, but big satellite has poor maneuverability

http://heasarc.gsfc.nasa.gov/

Several dozen of minites

RIKEN

Space Radiation Lab

Mission Background - Polarization

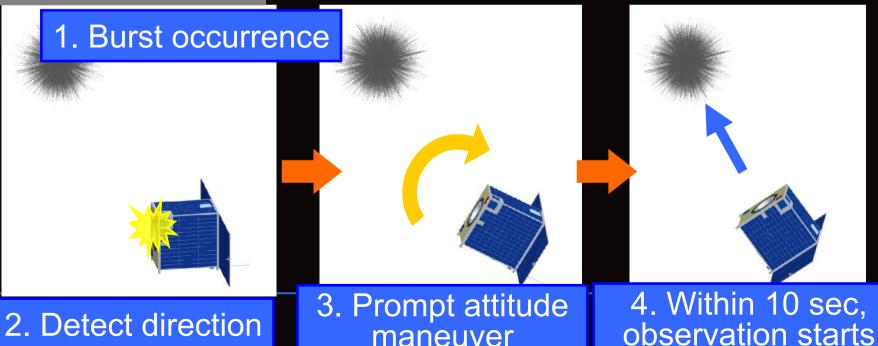
Observation approaches

- Photometry
- Spectroscopy
- Imaging
- Polarization

Only polarization is still kept intact. Polarization is expected to elucidate origin of high energy radiation or magnetic structure, due to its completely different aspect of the observation approach.

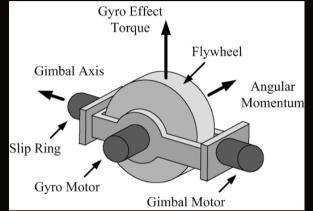
TSUBAME observes polarization of astronomical burst objects

Mission Overview


Scattering type hard X-ray polarization detector

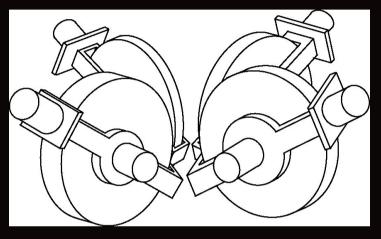
Gamma-ray burst direction detector

2 detector observe polarization of gamma-ray burst

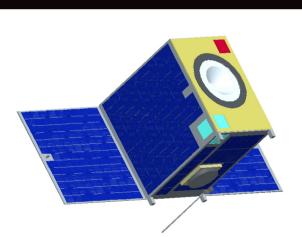

(Using APD sensors)

maneuver

ADCS – CMG


Control Momentum Gyro(CMG)

For large spacecraft (ISS, Mir, etc)


c) CMG specifications		
Density (material: brass)	8920kg/m ³	
wheel diameter	50mm	
wheel thickness	12mm	
wheel weight	200g	
Ave. output torque $\overline{T} \approx 40 m Nm$		

Realization of Prompt Attitude maneuvers

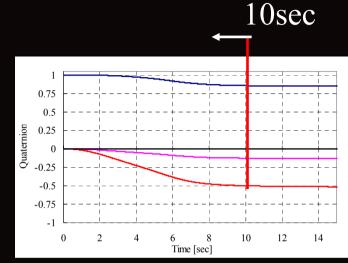
Low inertia Small satellite

High torque output CMG

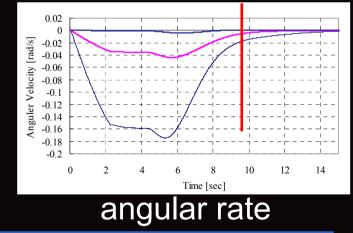
rompt attitude maneuver meets the requirement

Advanced Technology Demonstration

Technical challenges

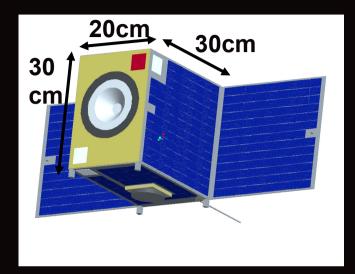

- Downsizing design (Low energy, weight)
- Robust and singularity avoidance control

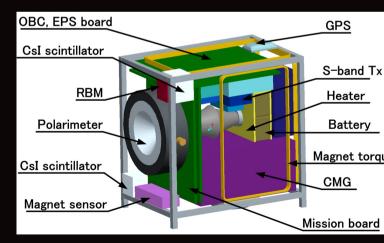
Small satellite is a suitable platform for the early demonstration of study results



Simulation result of CMG

from wheel acceleration to observation beginning


attitude angle(quaternion



Concept design of satellite system

Size	30 cm \times 20 cm \times 30 cm
Weight	16kg
Orbit	Sun-synchronize : Altitude 800km, Inclination 98.6 $^\circ$
Life-time	1 year
Mission	Gamma-ray burst direction sensor (CsI & APD) Polarimeter (P-Sci & PMT)
ADCS	Control:CMG, Magnet torquer Determination:Gyro, Sun sensor, Magnet sensor
C&DH	32bit MPU (COTS) SDRAM 32MB
Comm.	S-band Tx (Mission data) BPSK 200kbps S-band Tx (HK data) BPSK 9600bps S-band Rx (Command data) PM 9600bps S-band mono pole / patch antenna
EPS	Multi-junction cell (efficiency 22%) Power generation approx. 40W Li-ion battery Peak power tracking system
Structure	Paddle unfolding mechanism Passive thermal control

Present status and future works

Conceptual design level now ⇒ BBM fabrication phase Launch date is assumed in 2007 Cooperation with JAXA

Tokyo Tech satellite development projects "Cute-1.7" and "TSUBAME"

- Cute-1.7 is a 2kg Cubesat using PDA as a main computer, and has a science mission of on-orbit demonstration for an advanced high quality APD sensors
- TSUBAME is expected to pursue a fullfledged science observation mission, and also demonstrate small-sized CMG system performance for prompt attitude maneuvers.

END Thank you for listening.

